ricardomol
  • Ricardomol Notes
  • Frontend
    • Javascript Toolchain
    • Javascript
      • Quirks
      • Articles
        • Function caching
        • 12 JS Tricks
      • Closures
      • Assorted
      • ES6
      • this
      • OOP
      • Async Programming
      • Functional Programming
      • Typescript
    • React
      • Patterns
        • Render props
      • React Router
    • Webpack
    • CSS
      • Resources
  • Backend
    • Python
      • Shallow copy vs deep copy
      • Classes
      • Resources
      • Python C Extensions
      • Coroutines
      • Exceptions
      • Context managers
      • One-Liners
      • Open function
      • Object introspection
      • Targeting Python 2 + 3
      • For - else
      • Comprehensions
      • Lambdas
      • __slots__ magic
      • Collections
      • Enumerate
      • Mutation
      • Map, Filter and Reduce
      • Decorators
      • Sets
      • Fluent Python summary
      • Quizes / Tips
      • Generators
    • Django
      • Generic Relations
      • FBV's vs CBV's
      • ORM
      • DRF
    • RESTful Architecture
    • Resources
  • Databases
    • Joins
    • Normalization
    • PostgreSQL
  • DevOps
    • Docker
      • 0. Resources
      • 2. Services
      • 3. Swarms
      • 5. Stacks
      • 6. Deploy your app
    • CI
      • CI with Django
    • CD
    • PaaS
    • WSGI servers
    • Django
      • Django Deployment
    • Modern DevOps with Django
  • Git
    • Git
  • Comp Sci
    • Big O Notation
    • Patterns
    • Programming paradigms
  • Assorted
    • TCP vs UDP
    • Tests
    • MongoDB
    • Node
      • Resources
    • Go
    • HTTP vs HTTP2
    • GraphQL
    • Books
    • Vim
    • IPv4 vs IPv6
    • Regex
    • Redis
    • Celery
      • Brokers
    • Caching
  • SECURITY
    • Security
Powered by GitBook
On this page
  1. Backend
  2. Python

Sets

Behave mostly like lists with the distinction that they can not contain duplicate values.

Example: check wether there are duplicates in a list or not:

With a for loop:

some_list = ['a', 'b', 'c', 'b', 'd', 'm', 'n', 'n']

duplicates = []
for value in some_list:
    if some_list.count(value) > 1:
        if value not in duplicates:
            duplicates.append(value)

print(duplicates)
# Output: ['b', 'n']

Withsets:

some_list = ['a', 'b', 'c', 'b', 'd', 'm', 'n', 'n']
duplicates = set([x for x in some_list if some_list.count(x) > 1])
print(duplicates)
# Output: set(['b', 'n'])

Other methods

Intersection

You can intersect two sets.

Example:

valid = set(['yellow', 'red', 'blue', 'green', 'black'])
input_set = set(['red', 'brown'])
print(input_set.intersection(valid))
# Output: set(['red'])

Difference

You can find the invalid values in the above example using the difference method.

Example:

valid = set(['yellow', 'red', 'blue', 'green', 'black'])
input_set = set(['red', 'brown'])
print(input_set.difference(valid))
# Output: set(['brown'])

You can also create sets using the new notation:

a_set = {'red', 'blue', 'green'}
print(type(a_set))
# Output: <type 'set'>

PreviousDecoratorsNextFluent Python summary

Last updated 6 years ago